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An evaluation of double-torsion testing of 
polymers by visualization and recording of 
curved crack growth 
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The development and growth of the curved crack front in a double-torsion fracture-mechanics 
specimen is investigated by direct observation of crack propagation during the test. The crack 
front motion is analysed from a video-recording of the fracture test, and three distinct stages of 
crack propagation are identified. This work shows some of the requirements for the application 
of conventional double-torsion analysis to this test configuration: the material characteristic - 
critical strain energy release rate as a function of crack velocity - can be correctly obtained, 
provided that three steady-state conditions (static, kinematic and dynamic) are all fulfilled. 

1. I n t r o d u c t i o n  
Double-torsion (DT) testing is a useful experimental 
technique introduced in 1966 by Gerry [1] and subse- 
quently applied by Kies and Clark [2]. It has been 
successfully used, in the last fifteen years, for the 
fracture mechanics characterization of many materials, 
such as ceramics [3-6], glass [7-9] and brittle or semi- 
brittle polymers [10-14]. 

Interest in the DT test is due to its experimental 
simplicity and the possibility of determining fracture 
resistance as a function of crack speed in rate-sensitive 
materials. The former characteristic is particularly 
attractive and advantageous if DT is compared to 
other test methods [9]: the test piece is a simple rectan- 
gular plate, and the only machining required (in 
addition to edge-notch milling) is side-grooving aimed 
at preventing crack wandering. 

The four-point loading system applied at the notched 
end of the specimen (Fig. 1) generates a torsion on 
each of the two rectangular beams separated by the 
notch: a curved crack develops from the notch and 
runs through the specimen following the direction of 
the groove. 

Under linear elastic conditions, the strain energy 
release rate, G, (kJm 2) can always be expressed in 
terms of specimen compliance, C (/~m N-  ~ ), as follows 

p2 dC/da 
G - (1) 

2 dA/da 

where P is the load (KN), a is the crack length from 
the load plane, measured at the lower edge of the 
specimen (mm) and A the crack surface are (mm2). In 
order to derive the term (dC/da) for this test con- 
figuration, a conventional "pure torsion" analysis [15] 
has been satisfactorily applied. From that analysis, 
specimen compliance is expressed by 

12 
C - k l[ tWB 3 a + C O (2) 

where 1 is the distance between the load points for a 
single beam (ram), kl a geometrical correction factor, 
p the shear modulus (GPa), W the specimen width 
(ram), B the specimen thickness (ram) and Co the 
specimen compliance for a = 0 (#mN -~) and P 
the load, which indicates the linear dependence of the 
compliance, C, on the crack length, a. Alternatively, 
the function C(a) can, of course, be determined 
experimentally by direct measurement on a series of 
specimens with varying a. 

If the crack profile does not change with crack 
extension, it can be shown that [16] 

dA 
- Bo (3)  

da 

where Bc is the thickness at the groove (mm). 
The critical value of the strain energy release rate, 

Gc (kJ m-2), can then be determined by measurement 
of the value of the load at fracture, Pc (kN) once the 
"calibration factor" (dC/da) has been determined. 
Combination of the theoretical result Equation 2 and 
Equations 1 and 3 gives us [4, 10, 17] 

P~ l 2 

Gc = 2B~ k~12 WB 3 (4) 

Once the geometrical parameters are assigned, 
Equation 4 directly relates G~ to Pc, so that G~ can 
simply be determined from the value of Pc, without 
needing to know a. Under general testing conditions, 
the crack may grow at a varying speed d = d(t) 
(where a is the nominal crack velocity in mm sec -~ ) 
and Gr and Pc will both vary during the test, since 
Gc = G~(,~). 

From the definition of specimen compliance, C -- 
x/P, where x is the cross-head displacement (ram), the 
following expression of crack speed can immediately 
be derived 

= (5) 
Pc(dC/da) + C(dPr 
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Figure 1 Geometry and loading arrangement of the double-torsion 
specimen, with crack growth as observed during tests. 

If the fracture test is carried out in a displacement- 
controlled machine at constant cross-head speed, k, 
and Gc(~) is a monotonically increasing function of 
crack speed, ~i, the constant Pc regime is in order, as 
shown by Leevers [18], and Equation 5 is simplified as 
follows 

a - ( 6 )  
Pc(dC/da) 

which predicts that a kinematic steady-state (b = 
constant) will parallel the dynamic steady-state 
(Pc = constant) (the limitation imposed on the Gr 
function of being monotonically increasing confines 
the applicability of Equation 6 to continuous crack 
propagation, excluding phenomena such as "stick- 
slip" propagation). 

From Equations 4 and 6 it thus appears possible to 
derive the Gc (b) characteristic of the material, with no 
need to measure a or d directly. 

Some approximations limit the general validity of 
this analysis, however. Thus 

(1) The two torsional beams are not ideally clamped 
at their ends, since the uncracked portion of the plate 
is compliant [16]; they also undergo a warping defor- 
mation [19]. 

(2) The coupling of the two beams generates a 
region of compressive stresses at the upper-inner side 
of the two beams, preventing them from overlapping 
[16]. 

(3) The stress distribution along the crack front is 
triaxial, and the principal stresses change in direction 
and magnitude with thickness [19-21]. 

(4) Linear compliance actually holds good only for 
the central portion of the crack length range [7, 20]: at 
both extremes, the compliance C against a curve 
shows upturns. 

(5) From the curvature of the crack front, several 
complexities in interpretation arise, since crack veloc- 
ity distribution along the crack front calls for some 
corrections of the Gr against 3 values calculated 
[18, 22-25]. 

(6) "Pure torsion" analysis assumes small deflec- 
tions. Under this condition, the specimen compliance 
C can be determined from the expression C = x/P, as 
in Equation 2. When large deflections are reached, 
however, this relationship holds with ,approximation 
only, and has to be corrected [14, 26] as necessary. 
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The aim of this work is to re-examine some of the 
complexities in interpretation inherent in this test, in 
order to define better the requirements and limits of its 
application. 

To this end, the entire crack-growt h process was 
recorded by means of a video camera connected to a 
video recorder. The recording was then analysed by 
means of a computer: each frame sampled was digit- 
ized, processed, and printed out. Together with the 
load-time recording, this system thus permits coupled 
analysis of the kinematics and dynamics of the frac- 
ture process. 

2. Experimental details 
For the present investigation we used a polymeric 
material that is optically transparent and brittle under 
normal test conditions: cast sheets of a commercial 
polymethylmethacrylate were kindly supplied by 
Vedril S.p.A. 

DT specimens were obtained from sheets varying in 
thickness between 3 and 12 mm; the in-plane dimen- 
sions of the samples were between 30 and 120mm 
wide and 150 mm, or more, long. The specimens were 
edge-notched by means of a disc saw and side-grooved 
to a depth (B - Bo) of about 20% of plate thickness, 
B. The notch tip was then sharpened by forcing a 
razor blade into the material. For the test, the speci- 
men is laid on two parallel rounded bars whose spac- 
ing can be varied. The load is applied at the upper side 
of the specimen by means of two small hemispheres 
(3 mm in radius and placed 13 mm apart), that move 
as one with the cross-head of a scre.w-driven Instron 
testing machine. 

One side of the specimen was metallographically 
polished and the running crack was viewed perpen- 
dicularly to its plane through the polished face 
(Fig. 1): particular care was taken to avoid any optical 
distortion in crack growth monitoring. 

The video recording system consists of a Ikegami 
CTC-6000 professional television camera, offering 
high resolution (800 lines) and high sensitivity (illumi- 
nance range: 1-100 luxes), connected to a Sony 
U-Matic VO-5800 PS 3/4" standard video-recorder. 
The major features of this standard are high resolu- 
tion of the output video signal (340 lines for the 
monochrome mode), a stable playback picture, and a 
very stable still picture; semi-frames are generated 
every 1/48 of a second. A high-resolution TV monitor 
(800 lines) was used to have real-time crack observa- 
tion during the test. Since the resolution of the video 
picture is limited by the recorder's 340-line output, 
suitable optical lenses were used to provide suf- 
ficient magnification of the crack image. Each image 
can then be digitized, processed by computer, and 
printed out. 

Crack growth shooting and load-recording were 
synchronized for subsequent quantitative correla- 
tion. 

All the results given in this paper were recorded at 
room temperature and constant cross-head displace- 
ment rates, chosen on the basis of Equation 6, so as 
to maintain the crack speed, a, constant under varying 
specimen dimensions. 
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Figure 2 Crack front profiles for different materials and specimen 
widths. 

3. Experimental results 
This work can be divided into parts covering five 
topics. First ("crack front shape") we analyse the 
shape of the crack during its propagation following 
the direction of the groove; secondly ("statics"): the 
applicability of Equation 2 to specimens with different 
dimensions is verified; third ("kinematics") the devel- 
opment of the crack from the initial notch through the 
entire section and length of the specimen is investigated; 
fourth ("dynamics") by combining the experimental 
load-displacement curve and the simultaneously 
recorded crack growth development, we assess the 
limits for achieving the requisite steady-state regime; 
and fifth ("toughness measurement and test valida- 
tion") the determination of material toughness via the 
theoretical Equation 4 is checked against the direct 
measurement of the specific fracture energy (dU/dA). 

3.1. Crack front shape  
Strain analysis of the double-torsion configuration 
has shown that both specimen geometry and material 
characteristics have an influence on crack front shape 
[18, 24]. Our experimental results show that both 
specimen thickness, B, and width, W, affect crack 
front shape, in agreement with the findings of several 
authors: Fig. 2 indicates the comparable effect of 
specimen width and material (PMMA, rubber- 
modified epoxy resin) on crack shape, in agreement 
with Stalder and Kausch's findings [24]. 

By contrast, cross-head rate (or crack speed), in the 
range of 1 to 200mmmin -~, was found to have no 
influence on the shape of the crack front profile, as 
stated also by Stalder and Kausch. 

The effect of variations in side-groove depth 
(B - Be) was especially investigated in this work, in 
order to check the theoretical dependence of crack 
shape on Be, resulting from previous analyses [18, 24]. 
It was found that the crack front profile has the same 
shape irrespective of Be, for specimens of a given 
thickness, B, and width, W. Fig. 3 shows an example 
of this invariance: the pictures taken during crack 
propagation show the crack front profile on three 
specimens 12mm thick and varying groove depth 
(B - B~) = 2.5, 4 and 5.5 mm respectively (Fig. 3a). 
In Fig. 3b, the same profiles are redrawn with refer- 
ence to the base line of the groove, given the same 
"nominal" crack length, a. In agreement with Stalder 
and Kausch's observations [24], attempts to super- 
impose these profiles by normalization in different 
coordinate axes (x, y), (x/B, y/B), (x/Bc, y/Br are in 
vain. 

(b) 

(C) 

Figure 3 Effect of side-groove depth on crack shape. (a) Pictures 
taken during crack propagation on three specimens with different 
groove depths. (b) Crack profiles do not superimpose if referred to 
the base-line of the grooves, while they do (c) if referred to the 
opposite (ungrooved) side. 

When the same profiles are referred to the opposite 
(ungrooved) side of the specimens, however, they 
appear superposable by a simple horizontal shift 
(Fig. 3c). 

This result indicates that the stress and strain distri- 
butions determining the shape of the crack front are 
not affected by grooves of whatever depth, in agree- 
ment with Tseng and Berry's results [19]. The strain 
analyses [18, 24] appear to be in disagreement with our 
observations, because the theoretically derived hyper- 
bolic shape of the curved crack explicitly depends on 
B c. In Leevers's analysis, in fact, the hyperbolic func- 
tion is calculated as 

B~2S 
y = - -  + K0 (7) 

x 

where S is a "shape factor" that depends on specimen 
geometry and material and K 0 a constant. Since the 
shape of the crack profile depends on the product B~ S, 
S ought to be proportional to B~ -2 for the theory to be 
able to account for the present experimental observa- 
tions. The analytical relationships given by Leevers 
and Williams [25] state a complex dependence of S on 
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Figure 4 Specimen compliance, C, plotted against crack length, a, for (a) different specimen widths (a 106 mm, b 82 ram, c 52 ram, d 26 ram) 
and (b) thicknesses (a 3 ram, b 5 ram, c 8 ram, d 12 ram). Arrows indicate the linear compliance range. 

B~,i.e. 

s =  coth Q (8) 

where 

- ( l  + v) (83 
Q 

and L is the specimen length (mm), v the Poisson's 
ratio, and c an adjusting factor introduced to account 
for the increased compliance of a finite crack path 
width. In Stalder and Kausch's analysis, the crack 
shape is given as 

y = r M / x  (9) 

where F is a material and M is a geometry-dependent 
function. Since M is directly related to B~ -~ , this 
theory is at variance with our experimental results. 

3.2. Statics 
Static measurements of the specimen compliance, C, 
as a function of "nominal" crack length, a, were car- 
ried out for different specimen widths, W, and thick- 
nesses, B; different crack lengths were obtained by 
letting the crack propagate to different extents from a 
straight notch of constant length a0 = 10mm. The 
resulting plots (Fig. 4) always show deviations from 
linearity at the two ends of the crack length range 
explored: the linear compliance characteristic of the 
test is verified over a range of crack lengths that 
increases as specimen width (Fig. 4a) and thickness 
(Fig. 4b) decreases. 

A tentative explanation of this experimental finding 
can be given in simple qualitative terms; for crack 
lengths less than about W/2, the two specimen halves 
are too short to be thought of as twisting in "pure 
torsion" and theoretical analysis becomes invalid; for 

crack lengths longer than (L - W/2), on the other 
hand, the uncracked portion of the plate becomes 
more like a bar (perpendicular to crack growth direc- 
tion) than a plate, behaving as a more compliant 
constraint for the two torsion beams. 

Deviations from linear compliance can also be 
influenced by thickness, because of the curved crack: 
the full development of its profile through the speci- 
men's thickness, from the initial straight notch, pro- 
gressively modifies the geometry of the two twisting 
beams. Because of this, the range of linearity is reached 
with longer cracks in thicker specimens (Fig. 4b). 

The experimental slope of the linear portion of these 
curves, (dC/da), was then compared with the theor- 
etically predicted value of [(dC/da)#], Equation 1, as 
shown in Fig. 5, the agreement is good. 

From the least square fitting of these data, a value 
of 1.37GPa is obtained for the shear modulus #, 
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Figure 5 Values of compliance derivatives from data of Fig. 4, 
plotted against the calculated values of [(dC/da)#] (see text). 
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Figure 6 (a) Crack fronts during crack propagation (time between 
two crack fronts = 3 sec). (b) Identification of different stages of 
crack propagation. 

which is qui te  close to the storage shear modulus 
#' = 1.48 GPa obtained at 1 Hz, 25~ for the same 
material. 

While the analytical relationship, Equation 1, 
appears to be complied within the specimen size 
range experimentally examined, its application remains 
impaired by uncertainty as to the value of the shear 
modulus # to be used, as pointed out by Stalder [27]: 
in fact, # is strongly dependent on strain rate in most 
polymers, and the strain rate effectively applied in the 
DT configuration is difficult to determine exactly. It 
would, therefore, seem always to be advisable to have 
accurate experimental calibration of the compliance 
derivative, (dC/da), preferably obtained at the dis- 
placement rate to be used in the DT fracture test. 

3.3. Kinematics 
Three distinct stages are generally observed in crack 
growth (Fig. 6): first, the development of the curved 
crack front from the initial straight notch, through the 
entire thickness of the specimen; second, the "solid" 
translation of the developed profile of the crack front 
along the grooved, longer axis of the plate; third, the 
final abrupt break, which is an end effect that will not 
be considered here any further. 

Detailed analysis of the video pictures shows that, 
even in the first stage of crack growth, the profile of 
any subsequent crack front comes from the same 
"master" curve as that observed in the second stage: 
in the first stage, however, the solid translation of the 
curve occurs in a direction tilted at an angle 95 to the 
longer axis of the plate (Fig. 6b). In all the experi- 
mental tests carried out in the course of the present 
investigation, the angle 95 was between 4 ~ and 7 ~ while 
Bc was varied between 9.5 and 6.5 mm, B was main- 
tained constant at 12 ram, and W was varied between 
36 and 92mm. 

A correct approach to the kinematic description of 
crack growth calls for the classification of three dif- 
ferent speeds (Fig. 7): the "nominal" crack speed 
along the lower edge of the specimen; the "local" 
speed 4 (mmsec -j)  at a point P of the crack front, 

Figure 7 Diagram showing the three different speeds considered for 
the description of crack propagation. 

directed as its normal ~; the translational speed of the 
crack profile, ~ (mm sec- ] ). 

Crack motion analysis shows that in stage I ~ is a 
constant, but is different from /t in both value and 
direction, while in stage II ~ coincides with a, and 
stationary crack propagation takes place. The speed 
distribution ~(P) along the crack front varies with time 
in stage I, until it reaches its definitive form at the 
beginning of stage II, as shown in Fig. 8, remaining 
invariant thereafter. From the distribution ~(P), a 
mean value can, of course, readily be evaluated. 
According to Pollet and Burns [23], the mean crack 
velocity, V, (mm sec- ~) can also be calculated from the 
nominal value of crack speed, d, via Equation 10 

( ;  ; V = 1/Bc c sin a 1/m dx a (10) 

where c~ is the radial coordinate [23] and rn the crack 
growth exponent. The translational velocity of the 
"master" profile (i = ti in stage II) was found to be 
dependent on geometrical parameters (W, B, Be), as 
predicted by the theoretical analysis, Equation 6. 

During the development of the crack front in stage 
I, the fracture surface area, A, (cm 2) does not increase 
linearly with crack extension, a, as it does in stage II: 
Equation 3 and the subsequent analysis are then appli- 
cable to stage II only. 

Starting from this observation, it is possible to 
model the crack movement by simple geometrical 
considerations. 

In agreement with Leevers [18] and Stalder and 
Kausch [24], we assume that the crack profile is 
described by a hyperbolic function, with the general 
equation 

v = S / u  ( l l )  

where H is a constant, when the Coordinate system 
(u, v) is taken as indicated in Fig. 9a. 

In stage II, where the crack front has reached its full 
development, it is more convenient to refer to coor- 
dinate axes (x, y) placed in physically significant 
positions, i.e. root of the notch and upper side of the 
specimen, as indicated in Fig. 9b; with this transfor- 
mation, the equation of the hyperbolic curve becomes 

H ( x - - B c ) +  ( a - - a o )  (12) 
Y = ff~ X 

where H = B~S in Leevers' notation. 
In stage I, where the crack front has not yet reached 

the upper side of the test specimen, the shape of 
its profile can again be described by Equation 12, 
provided that it is referred to a coordinate system 
(x', y') moving as one with the crack front in a direc- 
tion, r, tilted at the angle 95 with respect to the y axis, 
as shown in Fig. 9c, i.e. 

' = 4- (a  I --  a0) (12') 
X' 
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Figure 8 Distribution of local crack velocities along the crack profile, for different crack extensions. The origin of the x~ axis is taken at the 
intersection of each crack front with the lower edge of the specimen. 

At the end of  stage I (a = a~), when the crack front 
reaches the upper side of  the test specimen, the two 
reference systems (x', y ' )  and (x, y) are superposed and 
Equation 12 and 12' coincide. 

The fracture surface area, A, (shaded in Fig. 9c) can 
then be calculated as a function of crack length, 
a ~< at, from the equation 

A, (a )  = MNPQ-RNPQ = MN x MQ - x ' d y '  

- -  __ ~ (a - a 0 )  + ~ ' e ~  ~ 
= (a - %)(B~ - 00' sin 4>) J~'~o~+ 

x [SB~/(a,  - ao) + SB~ - y'] dy '  (13) 

By comparison, the fracture surface area in stage II 
(for a ~> a~) can be obtained by integration of 
Equation 3, giving us 

AH(a) = B~(a - ao) + constant. (14) 

From this analysis the value a~ of  the crack length at 
the transition from stage I to stage II appears to be a 
function of  the shape factor S, of  the specimen thick- 
ness at the groove, B~, and of  the angle q~. Assuming 
continuity of the two expressions Equations 13 and 14 
and of their derivatives at the transition from stage I 
to stage II, the value of  a~ can be predicted by solving 
the equation obtained by equating the two derivatives, 
once S, B~ and ~b are known. 

The resulting plot A against a is shown in Fig. 10 
for both stages I and II: a comparison with the experi- 
mental data, obtained by measuring the fracture area 
of each crack length directly from the video pictures, 
shows good agreement. The stage I-stage II transition 
was here found at a~ = a0 + 42 mm. 
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Figure 9 Illustration of the different coordinate systems considered 
for the analytical description of crack development and growth, as 
described in the text. 
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Figure 10 Fracture surface area as a function of crack length: 
comparison between experimental data (points) and calculated 
values via Equations 13 and 14 (full-line) (B c = 9.5ram, ~b = 5 ~ 
s = 0.8). 
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3.4. Dynamics 
A few typical load-t ime records are observed in D T  
tests, by varying the material, temperature, and dis- 
placement rate (Fig. 11). 

Under conditions of  continuous crack propagation,  
the dynamic steady-state ( P c - - c o n s t a n t )  can be 
reached beyond an initial transient in the load-t ime 
trace, provided a sufficient length is given to the test 
specimen. 

In Fig. 12 the load-t ime record for P M M A  at room 
temperature is compared with the corresponding crack 
speed diagram, drawn from the video-tape record. At 
first, the load, P, rises almost linearly with time (or 
displacement) till the crack starts to grow (beginning 
of stage I). Then the load-time curve bends and reaches 
a maximum, while the crack speed increases up to a 
constant value (beginning of stage II), as predicted by 
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Figure 11 Load-time records (arbitrary units) observed in double- 
torsion tests for different materials and test temperatures. 

Virkar and Johnson [28]; however, the load keeps 
decreasing in stage I I  before coming to a "plateau".  In 
the end (stage III)  the load drops rapidly, while the 
crack accelerates up to the final break. 

It is worth noting that the dynamic steady-state 
condition (Pc = constant) is reached in stage II, 
somewhat later than the static condition d C / d a  = 

constant and the kinematic condition a = constant. 
This result is consistent with the more general analysis 
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Figure 12 Load, F, a'nd nominal crack velocity, a, plotted against time during a typical double-torsion test. The intervals within which the 
three steady-state conditions (static, kinematic and dynamic) occur are also shown. 
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Figure 13 (a) Fracture energy, AU, released during a time interval 
(At = t 2 - fi), and (b) the corresponding fracture surface area, 
AA, considered in calculating G c from its definition (Equation 16). 

based on Equation 5, from which it appears that P~ 
needs not be constant to have d = constant, when 2 
and dC/da are constant. 

As already pointed out, if toughness is a monotoni- 
cally-increasing function of crack speed (as it is for 
PMMA under the test conditions we adopted), the 
dynamic steady-state regime is in order, since any 
change in Pc will be self-correcting according to 
Equations 4 and 5. Integration of Equation 5 under 
the conditions prevailing in stage II produces 

= a \ d a J  + Do C0\d--aaj + a (15) 

where D o is a constant of integration. The first term is 
constant in stage II, coinciding with the steady-state 
value of the critical load (see Equation 6), while the 
second term governs the variation of Pc with a: the 
load Pc is thus expected to approach its steady-state 
value asymptotically. 

All the load-time records reported in Fig. 11 appear 
to follow this behaviour: their differences have not 
been interpreted, however. 

3.5. Toughness measurement and test 
validation 

From the force-displacement curve and the video 
recordings of the fracture surface during the test, an 
average critical strain energy release rate, Go, at what- 
ever stage of crack growth, a, can be determined 
directly from the definition 

dU 
G~ - dA (16) 

The value of the energy increment (A U) spent on an 
extension AA of the fracture surface area during a 
time interval (At = t2 - tl) can be obtained from the 
load-time record, as shown in Fig. 13a, if linear elastic 

T A B L E  I Compar ison of toughness results 

Evaluation method Gc 

0m -2) 

a Equation 16 410 
b Equation 4 516 
c Equation 4 + LD* 464 
d Equation 4 + CFC t 625 
e Equation 4 + LD* + CFC? 563 

*Correction for large deflections. 
tCorrect ion for crack front curvature. 

behaviour is assured. For the same time interval, the 
corresponding crack surface area increment, AA, can 
be directly measured from the two videograms taken 
at instant tl and t 2 (Fig. 13b). The linear elastic 
assumption for measuring the fracture energy incre- 
ment is justified here, since the load was observed to 
vary linearly and reversibly with displacement during 
loadings and unloadings carried out while the crack is 
not propagating. 

The value of Go so determined is an average of the 
energy Gc(~) non-uniformly absorbed along the curved 
crack front because of the distribution in local crack 
velocity ~ [25]. The curves Gc plotted against (a - a0) 
obtained are thus not crack resistance curves (R cur- 
ves) of the material, that do not vary with test con- 
figuration, but may, at the most, be regarded as crack 
resistance curves of the material in this test. 

Comparison of one such curve (Fig. 14a) with the 
plot of the corresponding mean crack velocity, V, 
calculated from Equation i0 (Fig. 14b) shows some 
similarity. In stage I, Go varies with crack extension, as 
a consequence of the variation in the distribution of 
local crack velocities; the average velocity, V, also 
varies, together with the nominal crack speed, a. In 
stage II, however, the crack profile is fully established, 
so that the distribution of local crack velocities 
remains constant with crack propagation. The varia- 
tion of Gc with crack extension, observed in the initial 
part of stage II, is thus unexpected; it parallels the 
variation of the load (Fig. 12), which remains to be 
interpreted. 

In Table I, the "plateau" value of Go, determined 
directly from the definition (Equation 16), is com- 
pared with values obtained with the compliance 
method (Equation 4) and corrected for large deflec- 
tions (LD) according to Leevers [26]* and/or for the 
crack-front-curvature (CFC) according to the same 
author [18]. 

Results obtained according to evaluation methods 
a, b and c are in fact average values of Gc along the 
crack front where Gc varies, due to the distribution in 
local crack velocity, 4; by contrast, results d and e are 
values corrected for that distribution and refer to a 
crack velocity equal to the nominal crack speed, /t. 
Strictly speaking, then, results d and e are not compar- 
able with results a, b and c. Comparison of results b 
and d, and c and e shows the increase in the Gc value 
brought about by correction for the crack front cur- 
vature; this result is expected, since the nominal crack 

* The toughness correction factor, depends, naturally, on the deflection, x (Fig. 3 in [26]). For the present evaluation,  the mean value of  the 
deflection over the range in which Pc = constant  was considered. 
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Figure 14 (a) Strain energy release rate, G~, resulting from Equation 16 and (b) mean crack velocity, V, resulting from Equation 10 plotted 
against crack length, during the three stages of crack propagation. 

speed, ti, is larger than any actual velocity ~ in the 
distribution 4(P), and the CFC correction assumes Gc 
to be an increasing function of crack speed. 

Comparison of results b and c shows, by contrast, 
the reducing effect of the LD correction, which is a 
purely geometrical one. Furthermore, comparison of 
results b, c and a shows that the LD correction (b --* c) 
brings the value evaluated for Gc to fair agreement 
with the value obtained by direct application of the 
toughness definition; a 12% discrepancy still remains 
to be accounted for, however. 

4 .  C o n c l u s i o n s  

The theoretical predictions based on the "compliance 
analysis" (Equations 1-4) turn out to be confirmed 
with a satisfactory degree of precision, both on the 
static and the dynamic side. The various approxima- 
tions made in that analysis and referred to here in the 
Introduction, do not appear to limit its validity for 
purposes of the practical application of this test. To 
this end, the steady-state fracture regime must indeed 
be achieved - and this happens only when the three 
conditions dC/da = constant (static), d = constant 
(kinematic) and Pc = constant (dynamic) are all ful- 

filled. The extent of the transient stage to be overcome 
before the complete steady-state regime is achieved 
depends on such factors as the shape of the crack 
profile, the angle ~b of the profile slant translation in 
stage I, the material characteristics, and the test con- 
ditions. The present investigation shows that the crack 
can grow considerably before the steady-state is 
achieved and care must be taken to provide sufficient 
specimen length for the purpose. 
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